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INTRODUCTION
The PCOS represents one of the most prevalent endocrine 
disorders affecting women of reproductive age globally, with 
estimates suggesting its incidence could be as high as one in ten 
women [1]. It is characterised a spectrum of symptoms, including 
irregular menstrual cycles, hyperandrogenism and polycystic 
ovaries [2]. PCOS poses significant challenges in both diagnosis 
and management. Traditionally, diagnosis has relied on clinical 
evaluation, biochemical assays and ultrasound imaging [3]. 
However, the multifaceted nature of PCOS, coupled with variations 
in symptom presentation among individuals, often leads to delayed 
or inaccurate diagnosis. This underscores the urgent need for 
innovative approaches to enhance diagnostic accuracy and facilitate 
timely intervention for affected individuals.

Now-a-days, ML and DL models play a vital role in predicting 
diseases. Early-stage disease prediction can significantly alleviate 
long-term health complications [4-11]. Present study aimed to 
apply ML and DL models to predict PCOS using non invasive 
features. These models have the potential to aid in early diagnoses 
and treatment.

MATERIALS AND METHODS
The chosen research framework for this epidemiological inquiry 
adopts a retrospective case-control study design, relying on 
ultrasound scans to discern the presence or absence of PCOS. 
Within this investigation, a case designation is attributed to females 
diagnosed with a positive PCOS outcome, while a control status 
pertains to those with a negative PCOS diagnosis. This study was 
conducted in the Department of Obstetrics and Gynaecology at 
GVP IHC and MT Medical College, Vizag, Andhra Pradesh, India, 
from February 2024 to October 2024.

inclusion criteria: Subjects aged between 20 and 30 years were 
included in the study.

exclusion criteria: Subjects who were not willing to participate 
were excluded from the study.

Sample size calculation: The following formula [12] was used to 
determine the minimum sample size in each group.
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ABSTRACT
Introduction: Polycystic Ovarian Syndrome (PCOS) is a prevalent 
endocrine disorder affecting women of reproductive age, 
characterised by irregular menstrual cycles, hyperandrogenism 
and polycystic ovaries. Despite its high prevalence, the 
diagnosis of PCOS remains challenging due to the variability in 
symptom presentation. Traditional diagnostic methods involve 
clinical evaluation, biochemical assays and ultrasound imaging. 
Machine Learning (ML) and Deep Learning (DL) models offer 
promising avenues for predicting probable cases of PCOS 
using non invasive qualitative features.

Aim: To develop and compare the performance of Random Forest 
(RF) and Feedforward Neural Network (FFNN) models in predicting 
PCOS using abundant non invasive qualitative features.

Materials and Methods: A retrospective case-control study was 
conducted with 100 cases and 100 controls, selected based on 
ultrasound-confirmed PCOS diagnosis in the Obstetrics and 
Gynaecology, Gayatri Vidya Parishad Institute of Healthcare and 
Medical Technology (GVP IHC MT), Medical College departments 
from February 2024 to October 2024. Data were collected using 
a structured questionnaire capturing demographic and clinical 
variables. Feature selection was performed using the Chi-square 
filter method, with 10 features identified as significant. The data 

were split into training (80%) and testing (20%) sets and stratified 
5-fold cross-validation was applied. Model performance was 
evaluated using accuracy, precision, recall, F1 score and Area 
Under Curve (AUC).

Results: The RF model demonstrated high performance on the 
training set, with an average accuracy of 0.95, but exhibited 
variability on the testing set (accuracy of 0.80). The FFNN model 
showed consistent performance across both training (accuracy 
of 0.80) and testing datasets (accuracy of 0.82). The RF model 
identified irregular cycles and hirsutism as key predictors, while 
the FFNN model highlighted weight gain and abnormal Body 
Mass Index (BMI) as important features. The RF model required 
significantly less computational time compared to the FFNN 
model.

Conclusion: The RF model is preferable for tasks requiring 
computational efficiency, while the FFNN model offers better 
generalisation. The complementary feature importance 
rankings suggest that integrating insights from both models 
could enhance the understanding of PCOS predictors. In 
epidemiological investigations, these models can be used as 
preliminary screening tools for identifying probable cases of 
PCOS using non invasive qualitative features, especially in 
areas  where diagnostic facilities are not available.
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A basic FFNN consists of multiple layers:

Input layer: The input layer receives the feature vector Xi as input.

Hidden layers: One or more hidden layers process the input data 
through a series of weighted transformations using activation 
functions. Each layer consists of nodes (neurons) that apply linear 
transformations followed by non linear activation functions.

Output Layer: The output layer produces the final prediction for the 
binary dependent variable. For binary regression, a single output 
node with a sigmoid activation function is commonly used to 
generate a continuous output between 0 and 1, representing the 
predicted probability of the positive class.

The mathematical notation for a single neuron in a neural network 
layer can be represented as:

where: zj is the weighted sum of inputs to the neuron j. wij is the 
weight connecting neuron i in the previous layer to neuron j. xi is 
the input to neuron j. bj is the bias term associated with neuron j. 
s (.) is the activation function, typically a non-linear function like the 
sigmoid function for binary regression.

The output of the neural network is computed as the composition 
of multiple layers:

 Where,  represents the predicted probability of the 
positive class for observation i and f(xi) represents the forward 
propagation through the neural network.

Training a neural network involves optimising the network’s 
parameters (weights and biases) to minimise a loss function, 
typically the binary cross-entropy loss function, which measures the 
difference between the predicted probabilities and the true labels. 
The optimisation process, often performed using gradient descent 
or its variants, adjusts the weights and biases iteratively to improve 
the model’s performance on the training data.

model evaluation metrics: The comparative analysis employs a 
diverse set of performance metrics such as accuracy, precision, 
recall, F1 score and AUC in the Receiver Operating Characteristic 
curve (ROC).

Feature important scores: The RF model used average impurity 
reduction to assess each feature’s contribution, with scores 
normalised for straightforward comparison. In contrast, the FFNN 
employed permutation importance, where the performance decline 
from shuffling each feature indicated its influence. This approach 
enabled us to identify and rank the most critical features for both 
models effectively.

Preprocessing and feature selection: The Chi-square filter 
method was adopted for features selection. Among the 11 features, 
10 variables are associated with PCOS at a 5% level of significance, 
which include abnormal BMI, abnormal WHR, physical inactivity, 
weight gain, hair loss, hirsutism, irregular cycles, stress, skin 
darkening and fast food consumption, except for acne. The Variance 
Inflation Factor (VIF) method was used to identify multicollinearity. It 
was observed that there is no multicollinearity between the features, 
as all the features’ VIF values were less than 5.

training and testing: An 80% of the data was used to train the model 
and the remaining 20% was used for testing. The effectiveness of 
the models was assessed using a stratified 5-fold cross-validation 
method [15].

RESULTS
The age distribution between the PCOS-positive and PCOS-
negative groups shows a similar median age of 27 years. The 
PCOS-negative group has less variability (IQR of 3) compared to 
the PCOS-positive group (IQR of 5). Both groups exhibited slight 
negative skewness and a relatively normal distribution. The Mann-

where, ncase=sample size for cases, ncontrol=sample size for controls,  
n1-a/2=1.96 (Z-score corresponding to the 95% level of confidence), 
d=desired margin of error

V(A ⊂ C)=Variance of the AUC estimator 

where a=ZAUC×1.414, ZAUC=Z-score corresponding to the AUC 
value Anticipating Area Under the Curve (AUC) is 0.8, Estimation 
error (d)=0.1. The minimum number of PCOS cases needed was 46 
and a minimum number of controls needed was 46. In the present 
study, 100 cases and 100 controls are enrolled.

data collection: A structured closed-ended questionnaire was 
used to collect demographic, clinical and diagnostic variables. 
PCOS is the dependent variable. Abnormal Waist-Hip Ratio (WHR), 
abnormal Body Mass Index (BMI), unexplained weight gain, physical 
inactivity, hirsutism, hair loss, irregular cycles, skin darkening, acne, 
stress and fast food consumption were considered as independent 
variables, all of which are binary variables.

STATISTICAL ANALYSIS
mL and dL models: For the FE model, default parameters were 
employed where the number of trees (estimators) was set to 100. 
Each tree was allowed to grow fully unless further constraints on 
splitting were naturally met within the data. No maximum depth 
was specified, allowing the trees to expand until they reached 
pure or nearly pure nodes. Decision nodes and leaf nodes were 
determined based on the natural splits of the data, guided by the 
Gini impurity measure. A random state of 42 ensured reproducibility 
in the results.

The FFNN model consisted of three layers, with two hidden layers 
and an output layer. The first hidden layer contained 32 neurons 
and used the ReLU activation function, while the second hidden 
layer included 16 neurons with the same activation function. The 
output layer had a single neuron with a sigmoid activation function 
to classify the binary target. The FFNN model for 10 epochs were 
trained, using a batch size of 32. The model was compiled with the 
Adam optimiser and binary cross-entropy loss, which is suitable for 
binary classification.

rF model in mL: RF is an ensemble learning method that consists 
of a collection of decision trees, where each tree is built on a random 
subset of the data and features [13]. It is primarily used for classification 
and regression tasks.

rF model for a binary dependent variable: Given a training 
dataset  where Xi represents the feature vector for the 
ith observation and Yi represents the binary target variable (either 0 
or 1), the RF model is a collection of M decision trees. Each decision 
tree m is built using a random subset of the training data (bootstrap 
sample) and a random subset of the features at each split.

The prediction of the RF model for a new observation X is the 
aggregated prediction of all individual decision trees:

 where fm(X) is the prediction of the mth decision 
tree for observation X.

The decision trees in the RF model are typically grown to full depth 
(unpruned) to reduce bias. The randomness introduced during 
training helps reduce variance and prevents overfitting, making the 
model more robust to noise and outliers.

FFnn models in dL: Neural networks can also be used for 
regression tasks, including those with binary dependent variables 
[14]. However, representing the mathematical notation of a neural 
network for binary regression can be quite complex due to the 
intricate nature of neural network architectures.

Mathematical notation of a neural network regression model for a 
binary dependent variable:

Given a training dataset  where Xi represents the 
feature vector for the ith observation and represents the binary 
target variable (either 0 or 1).



Hanumanth Narni et al., Screening Tool for Predicting Polycystic Ovarian Syndrome www.jcdr.net

Journal of Clinical and Diagnostic Research. 2024 Dec, Vol-18(12): KC06-KC1088

demonstrated slight variability across the folds, indicating that it 
performs well on unseen data, although with some variations in 
recall and precision depending on the specific fold.

[Table/Fig-9] explores that the RF and FFNN models highlighted 
different features as the most important in predicting PCOS. The 
RF model emphasised irregular cycles and hirsutism as the top 
predictors, while the FFNN model prioritised weight gain, abnormal 
BMI and irregular cycles. This divergence in feature importance 
suggests that while both models agree on certain key features, their 
internal mechanisms differ in how they weigh the importance of 
various factors. The FFNN model appears to distribute importance 
more evenly across multiple features, whereas the RF model focuses 
more heavily on a few key predictors.

Whitney U test indicates no significant difference in age distribution 
between the groups (p-value=0.502).

[Table/Fig-1] depicts that the RF model exhibited strong performance 
on the training dataset, with high average metrics: an accuracy of 
0.95, precision of 0.96, recall of 0.95, F1 score of 0.95 and AUC 
of 0.95 [Table/Fig-2]. These results suggest that the RF model 
was highly effective at fitting the training data, showing excellent 
precision and recall with minimal trade-offs between the two.

Cross-
validation

evaluation metrics

accuracy Precision recall F1 score auC

Fold-1 0.96 0.95 0.96 0.96 0.96

Fold-2 0.96 0.96 0.96 0.96 0.96

Fold-3 0.96 0.99 0.93 0.95 0.96

Fold-4 0.96 0.96 0.95 0.96 0.96

Fold-5 0.93 0.94 0.93 0.93 0.93

Average 0.95 0.96 0.95 0.95 0.95

[Table/Fig-1]: Evaluation metrics by RF model of 5-fold cross validation on training 
dataset.

[Table/Fig-2]: ROC curve of RF on train dataset. 

[Table/Fig-3] illustrates that in the testing dataset, the RF model 
displayed a more variable performance, with an average accuracy 
of 0.80, precision of 0.79, recall of 0.82, F1 score of 0.80 and AUC 
of 0.80 [Table/Fig-4]. These results indicate that while the RF model 
is strong in terms of generalisation, its performance is somewhat 
less stable on unseen data compared to its performance on the 
training dataset.

Cross-
validation

evaluation metrics

accuracy Precision recall F1 score auC

Fold-1 0.70 0.67 0.80 0.73 0.70

Fold-2 0.73 0.76 0.65 0.70 0.73

Fold-3 0.80 0.77 0.85 0.81 0.80

Fold-4 0.85 0.89 0.80 0.84 0.85

Fold-5 0.93 0.87 1 0.93 0.92

Average 0.80 0.79 0.82 0.80 0.80

[Table/Fig-3]: Evaluation metrics by RF model of 5-fold cross validation on testing 
dataset.

[Table/Fig-5] shows that the FFNN model demonstrated consistent 
performance across the five folds of cross-validation on the training 
dataset, with an average accuracy of 0.80, precision of 0.81, recall of 
0.79, F1 score of 0.80 and AUC of 0.80 [Table/Fig-6]. These metrics 
indicate a balanced model with good generalisation capabilities, 
showing that it can identify positive cases with reasonable precision 
and recall.

[Table/Fig-7] indicates that in the testing dataset, the FFNN model 
showed slightly better performance, with an average accuracy 
of 0.82, precision of 0.85, recall of 0.80, F1 score of 0.81 and 
AUC of 0.82 [Table/Fig-8]. The model maintained its balance but 

[Table/Fig-4]: ROC curve of RF on test dataset. 

Cross-
validation

evaluation metrics

accuracy Precision recall F1 score auC

Fold-1 0.81 0.84 0.78 0.81 0.81

Fold-2 0.83 0.85 0.79 0.82 0.83

Fold-3 0.81 0.80 0.83 0.81 0.81

Fold-4 0.79 0.80 0.79 0.79 0.79

Fold-5 0.76 0.76 0.77 0.77 0.76

Average 0.80 0.81 0.79 0.80 0.80

[Table/Fig-5]: Evaluation metrics by FFNN model of 5-fold cross validation on 
training dataset.

[Table/Fig-6]: ROC curve of FFNN on train dataset.

Cross-
validation

evaluation metrics

accuracy Precision recall F1 score auC

Fold-1 0.83 0.93 0.70 0.80 0.83

Fold-2 0.76 0.87 0.65 0.74 0.77

Fold-3 0.85 0.79 0.95 0.86 0.85

Fold-4 0.75 0.78 0.70 0.74 0.75

Fold-5 0.93 0.87 1 0.93 0.92

Average 0.82 0.85 0.80 0.81 0.82

[Table/Fig-7]: Evaluation metrics by FFNN model of 5-fold cross validation on 
testing dataset.
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Computational time: The FFNN model required an average of 
2.47 seconds per fold during 5-fold cross-validation, reflecting its 
computational complexity due to multiple layers and parameters. In 
contrast, the RF model was much more efficient, averaging just 0.25 
seconds per fold. Its parallel processing of decision trees required 
significantly less computational time.

DISCUSSION
Thakre V conducted a study predicting PCOS using various invasive 
and non invasive variables, where the RF model outperformed four 
other models, achieving an impressive 89.0% AUC on test data and 
a 90.9% training accuracy [16]. Similarly, Subha R et al., used the 
RF algorithm with Chi-square feature selection to predict PCOS, 
resulting in an AUC of 0.889 in the ROC analysis [17]. Elmannai 
H et al., explored ML models for forecasting PCOS, finding that 
the Stacking ML approach with REF feature selection achieved 
perfect performance, surpassing other models [18]. Additionally, a 
meta-analysis by Bharali MD et al., highlighted the high incidence 
of PCOS among Indian women, with a prevalence of nearly 10% 
using Rotterdam’s and Androgen Excess Society (AES) criteria, 
compared to 5.8% using National Institutes of Health (NIH) 
criteria, emphasising the need for standardised diagnostic criteria 
[19]. Moreover, Shan B et al., identified significant risk factors for 
PCOS, including a family history of infertility (OR=11.953), diabetes 
(OR=7.008), menstrual disorders (OR=5.824), maternal menstrual 
irregularities (OR=2.557), mood disturbances (OR=2.852) and low 
physical activity (OR=1.866) [20].

Performance metrics: Indicate that the RF model outperformed 
the FFNN model in terms of accuracy, precision, recall, F1 score 
and AUC on the training dataset, emphasising the robustness 
of ensemble methods like RF in handling complex, non linear 
interactions between features [21]. However, the RF model’s 
performance on the testing dataset showed more variability, 
suggesting potential overfitting, a common challenge in ML models 
trained on high-dimensional data [22]. On the other hand, the FFNN 

model, despite having slightly lower training accuracy, demonstrated 
more consistent performance on the testing data, indicating better 
generalisation, which is often a strength of neural networks [23].

Several studies provide a basis for comparing model accuracy 
in PCOS prediction. Hosseini A et al., achieved an accuracy of 
0.85 with a RF model using both invasive (e.g., blood hormone 
levels) and non invasive features, which was slightly higher than 
the present study’s RF model accuracy of 0.80, which relied solely 
on non invasive features [24]. Kumar R and Choudhury T’s FFNN 
model, using only non invasive markers, reached an accuracy 
of 0.78, lower than the present study’s FFNN accuracy of 0.82, 
highlighting the potential of non invasive data for consistent PCOS 
prediction [25]. Li Z et al.’s, Support Vector Machine (SVM) model 
reached 0.88 accuracy with invasive measures like hormonal 
assays suggesting higher accuracy from additional tests, while the 
present study’s non invasive approach still achieves competitive 
accuracy [26]. Zeng H et al., reported that their RF model attained 
an accuracy of 0.81 using a mix of invasive and non invasive data, 
similar to the present study’s RF accuracy of 0.80, supporting the 
utility of non invasive methods alone [27]. Lastly, Jones H et al., 
used logistic regression with non invasive features alone, reporting 
a lower accuracy of 0.76, indicating that models like RF and FFNN 
can yield better results without invasive diagnostics [28].

Feature importance: The RF model identified irregular cycles and 
hirsutism as the most influential predictors of PCOS, consistent 
with clinical evidence that these symptoms are strongly associated 
with the syndrome [28]. Conversely, the FFNN model assigned 
higher importance to weight gain and abnormal BMI, reflecting the 
model’s ability to capture complex, non linear relationships between 
these features and PCOS. This divergence in feature importance 
underscores the complementary nature of these models, 
suggesting that integrating insights from both could provide a more 
comprehensive understanding of PCOS risk factors [29].

Computational efficiency: The RF model’s significantly shorter 
computational time (0.25 seconds per fold on average) compared 
to the FFNN model (2.47 seconds per fold) is noteworthy and 
consistent with literature that highlights the efficiency of ensemble 
methods. The longer computational time for the FFNN model reflects 
the complexity of neural networks, which involve multiple layers of 
computation and require extensive hyperparameter tuning, a trade-
off often considered in deep learning applications [30,31].

The differing feature importance rankings also suggest that using 
both models in tandem could provide a more comprehensive 
understanding of the predictors of PCOS. In epidemiological 
investigations, these models serve as preliminary screening tools for 
identifying probabilistic cases of PCOS using non invasive qualitative 
features, especially where diagnostic facilities are not available.

Limitation(s)
The absence of data for key features, such as family history of PCOS, 
resulted in the exclusion of this variable from the analysis due to the 
majority of data being missing. This may limit the model’s ability 
to account for hereditary influences on PCOS risk. Additionally, the 
case-control design used in this study could introduce selection 
bias, affecting the generalisability of the findings. A prospective 
cohort study may yield more comprehensive results by allowing for 
temporal data collection and a clearer understanding of how various 
risk factors contribute to the development of PCOS over time.

CONCLUSION(S)
The choice between RF and FFNN depends on the specific requirements 
of the task. If computational efficiency and quick deployment are 
priorities, the RF model is a clear winner. However, for applications 
where consistent performance and generalisation to new data are 
more important, the FFNN model offers a compelling advantage.

[Table/Fig-8]: ROC curve of FFNN on test dataset.

Feature

rF FFnn

average score 
of 5-fold CV rank

average score 
of 5-fold CV rank

Abnormal WHR 0.10 4 0.19 5

Abnormal BMI 0.07 8 0.20 2

Physical inactivity 0.05 10 0.18 9

Weight gain 0.14 3 0.21 1

Hair loss 0.08 5 0.19 5

Hirsutism 0.17 2 0.20 4

Irregular cycles 0.17 1 0.20 3

Stress 0.08 6 0.17 10

Skin darkening 0.08 7 0.19 8

Fast food consumption 0.06 9 0.19 7

[Table/Fig-9]: Feature importance scores and their ranks of each model.
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